

e-Book

Datenmodellierung mit Power BI

Tabellentypen, Beziehungen und Analytische Datenmodelle Ausgabe vom 27.04.2021

> Erstellt von Mag. Robert Lochner www.linearis.at #linearisblog

RECHTLICHES

© Robert Lochner, Linearis GmbH, 1020 Wien

Dieses e-Book darf ausschließlich durch den in der Fußzeile angegebenen Lizenzerwerber genutzt werden.

Das Werk einschließlich aller Inhalte ist urheberrechtlich geschützt. Alle Rechte vorbehalten. Nachdruck, Reproduktion (auch auszugsweise) in irgendeiner Form (Druck, Fotokopie oder anderes Verfahren) sowie die Einspeicherung, Verarbeitung, Vervielfältigung und Verbreitung mit Hilfe elektronischer Systeme jeglicher Art, gesamt oder auszugsweise, ist ohne ausdrückliche schriftliche Genehmigung des Autors untersagt. Alle Übersetzungsrechte vorbehalten.

Die Benutzung dieses e-Books und die Umsetzung der darin enthaltenen Informationen erfolgt ausdrücklich auf eigenes Risiko. Das Werk inklusive aller Inhalte wurde unter größter Sorgfalt erarbeitet. Dennoch können Fehler nicht vollständig ausgeschlossen werden. Der Autor übernimmt keine Haftung für die Aktualität, Richtigkeit und Vollständigkeit der Inhalte des e-Books. Es kann keine juristische Verantwortung sowie Haftung in irgendeiner Form für fehlerhafte Angaben und daraus entstandenen Folgen vom Autor übernommen werden. Für die Inhalte von den in diesem Buch abgedruckten Internetseiten sind ausschließlich die Betreiber der jeweiligen Internetseiten verantwortlich.

Power BI, Excel, SQL Server und Microsoft sind eingetragene Warenzeichen der Microsoft Corporation, Redmond.

POWER BI CAMP

Dieses e-Book ist als Manual für das Trainingsmodul "DAX & Datenmodellierung mit Power BI" im Rahmen des "Power BI Camp" konzipiert.

Nur die Teilnehmer eines Trainings erhalten sämtliche in diesem e-Book verwendeten Demo-Anwendungen.

DATENMODELLIERUNG MIT POWER BI

Ausgabe vom 27.04.2021

Rechtliches		1
Power BI Camp		
1 Ei	inleitung	6
1.1	Ziele dieses e-Books	6
1.2	Nicht-Ziele	6
1.3	Sprachliche Konventionen	6
1.4	Power BI Deskton Version	7
15	Verwendete Shortcuts	?
2 1	nalytisches Datenmedell in Power RI	, ,
2 4		0
2.1		
2.2		9
2.3	Analytische Datenmodelle	9
2.4	Power BI im Kontext des Microsoft Produktportfolios	10
2.5	Power BI Architektur und Fokus dieses e-Books	11
2.6	User Interface von Power BI Desktop	12
2.7	Zentrale Begriffe im Datenmodell	13
3 Ta	abellentypen in analytischen Datenmodellen ("Tables")	14
3.1	Faktentabellen ("Facts")	14
3.2	Dimensionstabellen ("Dimensions")	15
3.3	Bridge Tabellen ("Factless Facts")	16
3.4	Unverbundene Tabellen ("Disconnected Tables")	17
3.5	Best Practices Tabellenmodellierung	18
4 B	eziehungen in Power BI ("Relations")	19
4.0	Erstellen einer Beziehung in Power BI	19
4 1	Funktionsweise von Beziehungen in Power BI (Filter Propagation")	
4.2	Figenschaften von Beziehungen in Power BI	==
4 .2.	1 Überblick zu den Beziehungseigenschaften	23
4.2.	2 Kardinalität / Beziehungstypen ("Cardinality")	23
4.	2.2.1 1:n Beziehung ("stark")	24
4.	2.2.2 m:n Beziehung ("schwach")	25
4.	2.2.3 1:1 Beziehung	25
4.2.	 Filterrichtung ("Filter Direction") 2.3.1 Unidirektionale Eilterung (Single") 	26
4.	2.3.2 Bidirektionale Filterung ("Single")	20
4.2.	4 Aktive und inaktive Beziehungen ("Active / Inactive Relations")	28
4.2.	5 Vollständigkeit der Dimension ("Blank-Row")	29
4.2.	6 Zusammengesetzte Keys ("Multi-Column Keys")	30
4.2.	7 Starke und Schwache Beziehungen ("Strong / Weak Relationship")	31
4.3	Best Practices Beziehungen	32
5 D.	atenmodelle in Power BI	33
5.1	Standard-Modelle in Power BI	34
5.1.	1 Flat/Single Table	34
5.1.	2 Star Schema	35
5.1.	3 Snowflake Schema	36
5.1.	4 Multi-Fakten Schema	37
5.	1.4.1 Multi-Fakten Schema Typ 1 (m:n)	37
	5.1.4.1.1 Anwendungsfall "Orders & Invoices"	39

	5	.1.4.1.2 Lösungsvariante A: m:n Beziehung	39
	5	.1.4.1.3 Lösungsvariante B: Verbindungstabelle mit zwei 1:n Beziehungen (bidirektional)	40
	5	.1.4.1.4 Lösungsvariante C: Transformation in ein Star Schema	43
	5	.1.4.1.5 Evaluierung Multi-Fakten Schema Typ 1	44
	5.1	.4.2 Multi-Fakten Schema Typ 2 (gemeinsame Dimensionen)	45
	5	.1.4.2.1 Anwendungsfall "Reseller & Internet Sales"	46
	5	.1.4.2.2 Anwendungsfall "Actuals & Budget"	49
	5	.1.4.2.3 Anwendungsfall "HR Anwendung"	52
	5	.1.4.2.4 Anwendungsfall "Marketing Anwendung"	55
	5.1.5	Disconnected Pattern	56
	5.1.6	Many-to-Many Schema	58
	5.1.7	Evaluierung der Modellierungsoptionen	60
	5.2	Anti-Modelle in Power BI	61
	5.2.1	Perioden in den Spalten	61
	5.2.2	Kennzahlen in den Spalten	62
	5.2.3	Szenarien in den Spalten	63
	5.2.4	Zerteilte Faktentabelle	64
ļ	5.3	Datumsdimension in Power BI	65
	5.3.1	Auto Date Dimension	65
	5.3.2	Custom Date Dimension	68
ļ	5.4	Best Practices Datenmodelle	71
6	Gä	ngige Modellierungsthemen	72
(6.1	Fehlerursachen in Beziehungen	72
	6.1.1	Primärschlüssel nicht eindeutig	72
	6.1.2	Zirkelabhängigkeit ("Circular Dependencies")	74
	6.1.3	Bidirektionale Filterung behindert Time Intelligence Funktionen	75
	6.1.4	Bidirektionale Filterung führt zu Mehrdeutigkeit ("Bidirectional Model Ambiguity")	76
	6.2	Versionierte Dimensionen ("Slowly Changing Dimensions")	78
(6.3	Role Playing Dimensions	79
	6.4	Hierarchische Dimensionen	80
	6.5	Parent Child Dimensionen	82
	6.6	Unterschiedliche Granularitäten	83
,	6.7	Aggregationstabellen	83
	6.8	Row Level Security (RIS)	85
7	Sei	mantische Anreicherung von Columns und Measures ("Properties")	86
	7 1	Default Summarization für Wertfelder festlegen	86
	7.2	Sort-by-Column Figenschaft definieren	00
	7.3	Ausblenden nicht direkt analyserelevanter Felder	88
	7.4	Datenkategorie für Geo-Informationen und URLs festlegen	89
	7.5	Definierte Hierarchien	90
	7.6	Display Folder	91
	7.7	Formatierung von Datum und Zahlen	÷ = 92
8	Spe	eichermodi in Power BI ("Storage Mode")	94
;	8.1	Import Mode	94
;	8.2	Direct Query Mode	95
:	8.3	Connect Live Mode	97
;	8.4	Import vs. Direct Query vs. Connect Live	99

DATENMODELLIERUNG MIT POWER BI

Ausgabe vom 27.04.2021

8.5 C	omposite Models	99
8.5.1	Composite Models mit relationalen DBs	99
8.5.2	Composite Models mit Connect Live	101
8.6 S	treaming Datasets	103
9 Chea	tsheet & Best Practices	106
10 Quel	len	107

1 EINLEITUNG

1.1 ZIELE DIESES E-BOOKS

Ziel dieses E-Books ist es, in Stichworten eine <u>solide Basis</u> zu den **Grundlagen zur analytischen Datenmodellierung in Power BI Desktop** zu vermitteln sowie weiterführende Links zu liefern:

- 1. Know-How zu den Tabellentypen (Faktentabellen, Dimensionstabellen, usw.)
- 2. Know-How Verständnis zu den **Beziehungstypen** in Power BI
- 3. Know-How zu den gängigen **Standard-Datenmodellen**, zu den **Anti-Modellen** sowie zur **Datumsdimension** in Power BI
- 4. Gängige **Modellierungsthemen** aus der Praxis
- 5. Know-How zu den Speichermodi in Power BI

1.2 NICHT-ZIELE

Der Fokus liegt dabei <u>nicht</u> darauf, eine <u>detaillierte Beschreibung</u> der konkreten Umsetzung im Programm Power BI Desktop zu liefern (hier verweisen wir auf die Programmdokumentation). Stattdessen werden Grundlagen und Anregungen geliefert, die dann im Zuge weiterer eigener Recherchen vertieft werden können.

Ebenso soll nicht eine <u>durchgehende Story</u> ("Trainingsfahrplan") erzählt werden, sondern dieses e-Book ist bewußt modular nach Themenbereichen aufgebaut und eignet sich daher sehr gut als Nachschlagewerk und nur bedingt als Trainingshandbuch für Einsteiger. Dies ist auch wichtig, um das e-Book in regelmäßigen Abständen an die laufend erscheinenden neuen Releases von Power BI Desktop anpassen zu können.

1.3 SPRACHLICHE KONVENTIONEN

In diesem e-Book werden für sämtliche Komponenten und Features in Power BI die <u>englischen Begriffe</u> verwendet. Einerseits deshalb, weil die Übersetzungen in der deutschen Sprachversion teilweise völlig unbrauchbar sind, andererseits weil mit den englischen Originalbegriffen die Webrecherche viel ergiebigere Ergebnisse liefert.

<u>Objektbezeichnungen</u> werden immer in fetter Schriftart gekennzeichnet:

• Aktivieren Sie in der Feldliste jetzt aus der Tabelle Dim Dates die Hierarchie Year Hierarchy

Menübefehle werden ebenfalls in fetter Schriftart und mit -> dargestellt:

- Start -> Options and Settings -> Options
 Das bedeutet: wählen Sie im <u>Menü</u> Start aus der <u>Gruppe</u> Options and Settings den <u>Befehl</u> Options.
- Kontextmenü des Datenpunkts -> Include
 Das bedeutet: klicken Sie mit der rechten Maustaste auf einen Datenpunkt (in einem Visual) und wählen den Befehl Include aus.

Tastaturbefehle werden so dargestellt:

- [Ctrl] und [+]
- Das bedeutet: drücken Sie bei gehaltener "Strg"-Taste zusätzlich die Taste "+"

DAX-Funktionen werden in Großbuchstaben und mit öffnender/schließender Klammer dargestellt:

• SUM(), ALL(), CALCULATE(), usw.

1.4 POWER BI DESKTOP VERSION

Releasestand: April 2021

Sprachversion: Englisch

Bitte beachten Sie, daß die Screenshots teilweise aus älteren Programmversionen stammen können, sofern diese sinngemäß auch in der aktuellen Version gültig sind.

1.5 VERWENDETE SHORTCUTS

Hier finden Sie eine kompakte Übersicht über die für dieses e-Book nützlichen Shortcuts für Power BI Desktop:

[Ctrl] + [X]	Markierten Zellinhalt in Zwischenablage Ausschneiden
[Ctrl] + [C]	Markierten Zellinhalt in Zwischenablage Kopieren
[Ctrl] + [V]	Inhalt der Zwischenablage auf markierte Zelle Einfügen
[Ctrl] + [S]	Datei Speichern
[Ctrl] + [Z]	Letzten Schritt rückgängig machen
[Ctrl] + [Y]	Letzten Schritt wiederholen
?	Aufruf der aktuellen Shortcut-Liste

Weiterführend: https://docs.microsoft.com/en-us/power-bi/desktop-accessibility

2 ANALYTISCHES DATENMODELL IN POWER BI

2.1 WAS IST POWER BI?

Power BI ist ein cloud-basiertes Dashboarding Tool mit einer sehr leistungsfähigen Query- und Datenmodell-Komponente als "Engine". In Power BI werden sogenannte analytische Datenmodelle aus verschiedenen Datenquellen aufgebaut, die Auswertung erfolgt – vergleichbar mit Power Point – auf einem Canvas.

Was es ist:

Was es nicht ist:

2.2 WOZU ANALYTISCHE DATENBANKEN?

Analytische Datenbanken sind optimiert für die performante und intuitive **Auswertung von Datentabellen durch** Fachanwender (und nicht durch die IT/Developer):

- Im <u>Gegensatz zu Excel</u> sind sämtliche Daten in Tabellen strukturiert, die Datenmengen können viel größer sein und die Auswertung ist sehr intuitiv auch ohne Formel-Know-How ("drag & drop") möglich.
- Im <u>Gegensatz zu relationalen Datenbanken ("SQL")</u> sind diese intuitiv per Drag & Drop ("Slice & Dice") und sehr performant auswertbar. Vergleichbar ist hingegen die tabellarische Struktur und die Beziehungen zwischen den Tabellen, letztere unterscheiden sich in ihrem Charakter aber grundlegend von den Beziehungen in einer analytischen Datenbank.
- Die Anbindung und <u>Kombination von verschiedenen Datenquellen</u> ist sehr einfach. Im Gegensatz zu Excel sind Copy & Paste Lösungen nicht möglich, sämtliche Daten sind aus Datenquellen angebunden ("Knopfdrucklösung" zur laufenden Aktualisierung).

2.3 ANALYTISCHE DATENMODELLE

Die Tabellen in einer analytischen Datenbank wie Power BI werden zu analytischen Datenmodellen kombiniert. Ein analytisches Datenmodell ist eine Einheit von Datentabellen zu einem bestimmten Thema (bspw. Sales Reporting, HR Reporting, usw.). Im einfachsten Fall besteht das analytische Datenmodell nur aus einer einzigen Tabelle, anspruchsvollere Datenmodelle bestehen aus mehreren oder vielen Tabellen, die idR durch Filterbeziehungen miteinander verbunden sind (fallweise aber auch bewußt nicht verbunden werden).

Wozu mit analytischer Datenmodellierung in Power BI beschäftigen?

Motivation #1: Informationen aus den Daten holen

Ein gutes Datenmodell lässt umfangreichere Auswertungen zu als ein schlecht/falsch konzipiertes Datenmodell. Je komplexer das Datenmodell (bspw. Multi-Fakten Schema), umso mehr DAX Know-How ist für bereits relativ einfache Anforderungen notwendig. Je simpler das Datenmodell (Flat Table, Star Schema), umso weniger DAX Know-How ist notwendig bzw. umso mehr kann mit dem bestehenden Know-How aus den Daten geholt werden.

Motivation #2: Interaktivität in den Reports erhöhen

Das Datenmodell ist für die Interaktivität der Reports ausschlaggebend (Filterzusammenhänge über Beziehungen).

Motivation #3: Performance der Reports

Das Datenmodell bestimmt die Performance der Reports. Bei kleinen Datenmengen mit einfachen Berechnungen (bspw. Summen) spielt das Datenmodell keine nennenswerte Rolle, bei großen Datenmengen mit anspruchsvollen Berechnungen (bspw. Iteratoren) ist das Datenmodell entscheidend für die Performance.

"DAX is the key, the Datamodel is the basis."

"Insane DAX, necessary for a messy datamodel."

2.4 POWER BI IM KONTEXT DES MICROSOFT PRODUKTPORTFOLIOS

Power BI ist ein Cloud Service, der im Hintergrund auf Microsoft Azure Plattform gehostet wird und der eng mit dem Service Office 365 verzahnt ist. Power BI ist im Kontext des (älteren) **BI Stacks** sowie der (neueren) **Power Platform** zu sehen, die Technologien dieser Produktfamilien ergänzen sich gegenseitig:

- 1. Power BI ist das Tool für Dashboarding und mobiles Reporting
- Excel ist das Tool f
 ür die adhoc Analyse und Simulation. Nat
 ürlich wird Excel in der Praxis auch intensivst f
 ür das (Management) Reporting sowie f
 ür die Planung/Forecasting verwendet.
- 3. **SQL Server** ist das Tool für die Realisierung von Enterprise BI Anforderungen.
- 4. Paginated Reports ist das Tool zur Realisierung von Standardberichten im PDF- und Druckformat.
- 5. **Power Apps** ist das Tool für die Datenerfassung

In Power BI gibt ein eigenes Visual für die Integration von Power Apps Erfassungsformularen, in Power Apps gibt es ein eigenes Set an Funktionen für die Interaktion mit Power BI Dashboards. Bitte beachten Sie, daß Power Apps kein Planungstool ist sondern ein Tool zur Erstellung von Erfassungsformularen.

- Power Automate ist das Tool für die Prozessautomatisierung In Power Automate gibt es sowohl Power BI Inputs (= Auslöser) als auch Power BI Outputs (= Ausgabe), die bspw. genutzt werden können, um automatisch E-Mails mit Power BI Reports zu versenden.
- 7. **Power Virtual Agents** ist das Tool zur Erstellung von Bots.

Die Technologien **Power Query** (M-Formelsprache) und das **Datamodel** (VertiPaq/Direct Query, Beziehungen & DAX-Formelsprache) sind nicht nur in Power BI sondern auch in Excel und SQL Server Tabular Model verfügbar. Damit kann das 1x aufgebaute Know-How rasch auf die anderen Produkte angewendet werden.

Diese Technologien haben in den 3 Produkten einige (sinnvolle) Spezifika, unterscheiden sich unglücklicherweise aber auch im Entwicklungsstand. Excel Power Pivot wird seit einigen Jahren nicht mehr weiterentwickelt, während das Power BI Datamodel und das SQL Server Tabular Model sich auf einem hohen (aber trotzdem nicht ganz identen) Entwicklungsstand befinden.

2.5 POWER BI ARCHITEKTUR UND FOKUS DIESES E-BOOKS

Power BI entfaltet sich aus dem Zusammenspiel von 3 Programmen – Power BI Desktop, Power BI Service, Power BI Mobile App – die insgesamt 5 Funktionen erfüllen:

- 1. Power Query (Extraktion, Transformation, Laden)
- 2. Data Model (Analytische Datenbank, Filterbeziehungen, DAX-Funktionen)
- 3. Visualisierung (visuelle Aufbereitung der KPIs, Interaktivität)
- 4. Deployment (24-Stunden Serverbetrieb, Berechtigungen, Aktualisierung)
- 5. Consumption (einfacher Zugang für Management und Information Worker)

Der Fokus dieses e-Books liegt auf der Komponente "2. Data Model".

2.6 USER INTERFACE VON POWER BI DESKTOP

Die 3 Architekturkomponenten können im User Interface von Power BI Desktop folgendermaßen zugeordnet werden:

- 1. Get Data / Queries ("blau")
- 2. Datamodel ("orange")
- 3. Visualisierung ("grün")

2.7 ZENTRALE BEGRIFFE IM DATENMODELL

Datenmodell | Datamodel

= Sammlung der Tabellen, Spalten, Beziehungen, Measures und (Row Level) Security in einer Power BI Anwendung

Tabelle | Table

- = Tabelle in einem Datenmodell (diese kann aus mehreren Quelltabellen zusammengesetzt worden sein)
 - Faktentabelle (Foreign Keys, Wertspalten, Faktenattribute)
 - Dimensionstabelle (Primary Keys und Attribute)
 - Bridge Tabelle
 - Parametertabelle

Spalte / Feld / Attribut | Column / Field / Attribute

= Spalte einer Tabelle (= Datum, Text, Zahl, Image, u.a.)

Zeile / Datensatz | Row / Record

= Zeile einer Tabelle

(Verschiedene) Elemente | (Distinct) Values

= (verschiedene) Einträge in einer Spalte einer Tabelle

Beziehungen | Relationships

= Verknüpfungen zwischen Tabellen (mit bestimmter Granularität und Filterrichtung)

Filtervererbung | Filter Propagation

= Weitergabe eines Filters von einer Tabelle auf eine verbundene Tabelle über eine oder mehrere Beziehungen

Measure | Measure

= mit DAX berechnete (und häufig gefilterte) Aggregation auf eine oder mehrere Spalten des Datenmodells

Berechnete Spalte | Calculated Column

= mit DAX berechnete Spalte, idR als Ableitung einer bestehenden Spalte

Berechnete Tabelle | Calculated Tables

= mit DAX berechnete Tabelle, häufig als Ableitung einer bestehenden Tabelle

Berechtigungssystem | Row Level Security

= mit DAX erstellte Bedingung, welche Datensätze für welche User angezeigt werden dürfen

DAX Abfragen | DAX Queries

= mit DAX erstellte Abfrage auf das Datamodel "von außen"

DAX | DAX

- = Data Analysis Expressions
- = Formelsprache für Measures, Calculated Columns und Calculated Tables

3 TABELLENTYPEN IN ANALYTISCHEN DATENMODELLEN ("TABLES")

Bitte beachten Sie, daß nur Teilnehmer eines Trainings sämtliche in diesem e-Book verwendeten Demo-Anwendungen erhalten.

3.1 FAKTENTABELLEN ("FACTS")

= Tabelle mit Ereignissen, die zu einem bestimmten Zeitpunkt geschehen sind und aggregiert ausgewertet werden (Verkäufe, Messungen, Zeiten, usw.)

Merkmale:

- o Enthält zumindest 1 aggregierbares Wertfeld, das in Visualisierungen als Measure verwendet wird
- Enthält zumindest 1 Zeitfeld

• Enthält je 1 Foreign Key Feld pro Dimension

"Foreign Key" = kann Duplikate enthalten, auf der "n"-Seite der 1:n Beziehung

- typischerweise "schmal und lang"
- o typischerweise kein Primärschlüssel (stört aber nicht, sofern nicht Performancegründe dagegen sprechen)
- kann auch Faktenattribute enthalten (= Attribute ohne zugehörige Dimensionstabelle)

Article	Employee	Order	Order	Order	Sales
Key	Кеу	Date	Number	Quantity	Amount
A262	E281	01.10.2019	SO43688	1	306,56
A224	E285	01.10.2019	SO50279	2	17,29
A221	E283	01.10.2019	SO50311	2	67,29
A224	E283	01.10.2019	SO50311	10	86,44
A262	E285	03.10.2019	SO43685	1	306,56
A224	E281	03.10.2019	SO46633	3	25,93
A221	E281	03.10.2019	SO46633	6	201,87
A224	E283	03.10.2019	SO50258	2	17,29
A224	E283	03.10.2019	SO50259	2	17,29
A221	E283	03.10.2019	SO50259	5	168,22
A224	E282	03.10.2019	SO50294	2	17,29
A221	E282	03.10.2019	SO50294	4	134,58
A221	E281	06.10.2019	SO46620	2	67,29
A224	E281	06.10.2019	SO46620	4	34,58
A224	E282	06.10.2019	SO46625	6	51,87
A221	E282	06.10.2019	SO46625	10	336,44
A265	E281	06.10.2019	SO50289	4	1.348,88
A221	E281	06.10.2019	SO50289	5	168,22

Häufige Themen:

- o n-Measure Format vs. 1-Measure Format
- 12 Monats-Wertspalten (Unpivot)
- o Bottom Level Only vs. Result Levels Included
- Sonderfall: Kein (sichtbares) Wertfeld
- Sonderfall: Kein (sichtbares) Datumsfeld
- o Sonderfall: Bezugszeitraum und kein (sichtbares) Wertfeld

Employee		
Maria	15.02.2015	18.08.2018
Hans	05.12.2018	31.12.2100
Alois	17.06.2014	31.12.2018
Carla	28.12.2017	31.12.2100
Biörn	10.01.2019	31,12,2100

3.2 DIMENSIONSTABELLEN ("DIMENSIONS")

= Stammdatentabelle zu einem <u>Hauptmerkmal</u>, nach dem die Fakten analysiert werden können (Kunden, Produkte, Zeit, usw.)

Merkmale:

0

• Enthält genau 1 Primary Key Feld

"Primary Key" = Feld mit eindeutigen Einträgen (ohne Duplikate), auf der "1"-Seite der 1:n Beziehung Logisches Matching der Keys (Format und Inhalt)

- typischerweise "breit und kurz"
- typischerweise zahlreiche Attribute zum Key (meist Textfelder, seltener auch numerisch, Datum, u.a.), die in Visualisierungen als Achse/Legende/Zeilen/Spalten verwendet werden

Employee			
Кеу	Employee Name	Birth Date	Gender
E281	Michael Blythe	25.07.1968	М
E282	Linda Mitchell	27.09.1979	F
E283	Jillian Carson	29.03.1962	F
E284	Garrett Vargas	04.09.1974	М
E285	Tsvi Reiter	18.08.1973	М

Article		Product	Product	List
Кеу	Article Name	Subcategory	Category	Price
A221	Sport-100 Helmet, Blue	Helmets	Accessories	33,6442
A224	AWC Logo Cap	Caps	Clothing	8,6442
A262	LL Road Frame - Red, 44	Road Frames	Components	306,5636
A265	LL Road Frame - Red, 48	Road Frames	Components	337,2200

Date Key	Year	Quarter	Month	Weekday
01.10.2019	2019	Q-4	Oct	Tuesday
02.10.2019	2019	Q-4	Oct	Wednesday
03.10.2019	2019	Q-4	Oct	Thursday
04.10.2019	2019	Q-4	Oct	Friday
05.10.2019	2019	Q-4	Oct	Saturday
06.10.2019	2019	Q-4	Oct	Sunday
07.10.2019	2019	Q-4	Oct	Monday
08.10.2019	2019	Q-4	Oct	Tuesday
09.10.2019	2019	Q-4	Oct	Wednesday
10.10.2019	2019	Q-4	Oct	Thursday

Häufige Themen:

- Denormalized ("Star") vs. Normalized ("Snowflake")
- Zeitlos vs. Versioniert ("Gültig-Von / Gültig-Bis")
- Imported vs. Calculated Table (bspw. Datumsdimension)
- Regular Format vs. Parent Child

Weiterführend: https://www.daxpatterns.com/parent-child-hierarchies/

- Sonderfall: Dimension mit aggregierbaren Wertfeldern
 Bspw. Statistikdaten für Branchen, Länder, usw. (zusätzlich: jährliche Versionierung)
- Sonderfall: Dimension mit 1 einzigem Feld
- Bspw. Verbindungstabelle mit 1 einzigem Key-Feld zur Verknüpfung von 2 Faktentabellen (nicht verwechseln mit Bridge-Tabelle, diese besteht aus 2 Feldern)
- Sonderfall: (Wechsel-)Kurstabelle
 Bspw. täglich oder monatlich versioniert

3.3 BRIDGE TABELLEN ("FACTLESS FACTS")

= stellen eine m:n Beziehung zwischen 2 Dimensionstabellen her

Merkmale:

• **typischerweise nur 2 Felder, die in einer m:n Beziehung stehen** (= Foreign Keys, die mit je 1 Dimensionstabelle verbunden werden)

Customer	Account
Кеу	Key
100	28000200
100	28000201
101	52000155
102	52000155

Typische Anwendungsgebiete:

- Zeichnungsberechtigung eines Kunden auf ein Bankkonto
- Zugehörigkeit eines Mitarbeiters zu einem Projekt / einer Abteilung / einer Planstelle / usw.
- Zugriffsberechtigung eines Users auf Land / Organisationseinheit / usw. ("Row-Level-Security" Pattern)

Häufige Themen:

• 100% vs. %-Gewichtung

Employee	Costcenter	
		Ratio
E281	C20221	50%
E281	C20300	20%
E281	C20302	30%
E282	C20221	100%
E283	C20221	100%
E284	C20221	100%
E285	C20221	90%
E285	C20302	10%

• Zeitlos vs. Versioniert ("Gültig-Von / Gültig-Bis")

3.4 UNVERBUNDENE TABELLEN ("DISCONNECTED TABLES")

= Tabelle, die in keiner Beziehung zu einer anderen Tabelle im Datenmodell steht

Merkmale:

• **Hat/braucht kein verknüpfbares Key Feld** (im Fall einer Lookup-Tabelle muß aber natürlich eine logische Verknüpfung möglich sein)

Typische Anwendungsgebiete:

• **Lookup-Tabellen für DAX-Berechnungen** (idR über Calculated Columns)

Typischerweise handelt es sich dabei um Dimensions- oder Faktentabellen, die mit den bestehenden Beziehungstypen <u>nicht</u> verknüpft werden <u>können</u>.

Currency	From	То	Rate
USD	01.01.2019	31.01.2019	1,21
USD	01.02.2019	28.02.2019	1,16
USD	01.03.2019	31.03.2019	1,28
USD	01.04.2019	30.04.2019	1,27
USD	01.05.2019	31.05.2019	1,22
USD	01.06.2019	30.06.2019	1,17
USD	01.07.2019	31.07.2019	1,12
USD	01.08.2019	31.08.2019	1,13
USD	01.09.2019	30.09.2019	1,14
USD	01.10.2019	31.10.2019	1,23
USD	01.11.2019	30.11.2019	1,15
USD	01.12.2019	31.12.2019	1,29

• Filter-Tabellen für DAX-Berechnungen (idR über Measures)

Typischerweise handelt es sich dabei um Dimensionstabellen, die <u>nicht</u> verknüpft werden <u>sollen</u>, um sich aus dem bestehenden Filter Context lösen zu können.

 Parameter Tabellen für DAX-Berechnungen (idR über Measures)
 Diese dienen als Basis für Auswahlfelder ("Slicer"), durch die der Benutzer eine Selektion treffen kann und damit die Darstellung bzw. Berechnung im Report interaktiv beeinflussen kann

• Measure Tabellen

Diese dienen als leere "Trägertabelle" lediglich zur Aufnahme der Measures im Datenmodell

^ ⊞	Me	asures
		Cost
		Quantity Sold
		Sales
$\sim \blacksquare$	Din	n Customer
~ ⊞	Din	n Date

Häufige Themen:

• Importiert vs. Calculated Table (bspw. Parameter- und Measure Tabellen)

3.5 Best Practices Tabellenmodellierung

- 1. Fakten- und Dimensionstabellen trennen
 - Ausnahme: historisierte Attribute in einem Flat Table können nicht ohne weiteres separiert werden
- 2. Faktentabellen
 - Normalisierung -> lediglich Key-Felder behalten (keine Attribute, diese gehören in die Dimensionen)
 - \circ Degenerated Dimensions (bspw. Sales Order Number, usw.) -> werden als Faktenattribute geführt
- 3. Dimensionstabellen
 - \circ Denormalisierung -> alle Attribute zum Merkmal in die 1 Dimensionstabelle
 - Junk Dimensions (bspw. Geschlecht, Status, usw.) -> sprechende Einträge (statt IDs) und ebenfalls Denormalisierung in die 1 Dimensionstabelle
 - Parent-Child Strukturen -> auflösen in Spaltenformat
- 4. Gestaltung der Key-Felder
 - in Faktentabelle ("Foreign Key") und Dimensionstabelle ("Primary Key")
 - Surrogate Keys v. Natural Keys
 - Namenskonvention (bspw. Suffix "Key" oder "ID" usw.)

4 BEZIEHUNGEN IN POWER BI ("RELATIONS")

Bitte beachten Sie, daß nur Teilnehmer eines Trainings sämtliche in diesem e-Book verwendeten Demo-Anwendungen erhalten.

Vergleich mit Excel:

Eine Beziehung erspart so viele SVERWEIS-Spalten in Excel, wie es Felder in der zu verknüpfenden Tabelle gibt. Im Star Schema wird mit einer Beziehung eine Dimensionstabelle technisch an die Datensätze einer Faktentabelle "angehängt", um die Wertfelder der Faktentabelle mit den Attributen der verknüpften Dimensionstabelle aggregiert auswerten zu können.

Vergleich mit SQL:

Eine Beziehung in Power BI sieht aus wie ein "Foreign Key Constraint" -> es handelt sich aber nicht um einen Constraint sondern um eine Filterbeziehung ("Filter Propagation").

4.0 ERSTELLEN EINER BEZIEHUNG IN POWER BI

Bestehende Beziehungen sind in Power BI im **Model View** zu sehen. Die **Erstellung einer neuen Beziehung** erfolgt durch Drag & Drop eines Key-Feldes aus einer Tabelle auf das zu verknüpfende Key-Feld aus der anderen Tabelle. Ob das Key Feld aus der Dimensionstabelle auf die Faktentabelle gezogen oder anders herum erstellt wird, ist unerheblich bzw. führt zur gleichen Beziehung. Power BI legt nämlich die Kardinalität der Beziehung sowie die Filterrichtung aufgrund der Datenstrukturen in den beiden Feldern automatisch fest.

DATENMODELLIERUNG MIT POWER BI

Ausgabe vom 27.04.2021

Die **Settings** einer Beziehung können durch Doppelklick auf die Beziehungslinie eingesehen und bei Bedarf auch angepasst werden:

mployee Key	Order Date	Order Numb	er	Order Quantity	Sales Price	Sales Amount
285	03.10.2019	SO43685		1	306,5636	306,5636
281	01.10.2019	SO43688		1	306,5636	306,5636
281	06.10.2019	SO46620		2	33,6442	67,2884
Michael Blythe	25.07.1	968 M				
Linda Mitchell	27.09.1	979 F				
Jillian Carson	29.03.1	962 F				
			Cross	s filter direction		
1)		+	Sinc	ale		
	285 281 281 Employee Name Michael Blythe Linda Mitchell Jillian Carson	285 03.10.2019 281 01.10.2019 281 06.10.2019 281 05.10.2019 With all Blythe 25.07.11 Linda Mitchell 27.09.11 Jillian Carson 29.03.11	285 03.10.2019 SO43685 281 01.10.2019 SO43688 281 06.10.2019 SO4620 Birth Date Birth Date Michael Blythe 25.07.1968 Linda Mitchell 27.09.1979 F Jillian Carson 29.03.1962 F	285 03.10.2019 SO43685 281 01.10.2019 SO43688 281 06.10.2019 SO46620 * Employee Name Birth Date Gender Michael Blythe 25.07.1968 M Linda Mitchell 27.09.1979 F Jillian Carson 29.03.1962 F	285 03.10.2019 SO43685 1 281 01.10.2019 SO43688 1 281 06.10.2019 SO46620 2 Employee Name Birth Date Gender Michael Blythe 25.07.1968 M Linda Mitchell 27.09.1979 F Jillian Carson 29.03.1962 F	285 03.10.2019 SO43685 1 306,5636 281 01.10.2019 SO43688 1 306,5636 281 06.10.2019 SO46620 2 33,6442 * <td colspan="3</td>

Alternativ können die Beziehungen auch über den Menübefehl **Manage Relationships** eingesehen, bearbeitet und auch neue erstellt werden:

ge relationships	
From: Table (Column)	To: Table (Column)
Fact Sales (Article Key)	Dim Products (Article Key)
Fact Sales (Employee Key)	Dim Employees (Employee Key)
Fact Sales (Order Date)	Dim Dates (Date Key)
Autodetect Edit D	elete
	Close
	ge relationships From: Table (Column) Fact Sales (Article Key) Fact Sales (Employee Key) Fact Sales (Order Date)

4.1 FUNKTIONSWEISE VON BEZIEHUNGEN IN POWER BI ("FILTER PROPAGATION")

Beziehungen in Power BI sind Filterbeziehungen zwischen 2 Tabellen.

D.h. ein Filter auf ein Feld (einer Tabelle) in einem Report* wird über die Beziehungen – je nach Kardinalität und Filterrichtung – an alle verbundenen Tabellen weitergegeben ("Filter Propagation"). Diese weitergegebenen Filter ändern den "Filter Context" und damit die Berechnungsergebnisse für Measures und die Anzahl der Einträge in einem Visual auf der Achse / Legende / Zeilen / Spalten beziehungsweise in einem Slicer.

* Ein Report ist in Power BI eine <u>Report Page</u> und in Excel ein <u>PivotTable</u> oder eine Cubeformel. Wichtig: ein Filter in der Tabellenansicht **Data** bewirkt <u>keine</u> Filter Propagation sondern dient lediglich als Tabellenanalysetool für den Power User zur Orientierung im Datenmaterial.

Beispiel:

Datenmodell

Star Schema, Beziehungen 1:n und unidirektional

Inhalt der "Dim Products" Tabelle:

Article Key 💌	Article Name	Product Subcategory	Product Category 💌	Standard Cost 💌	List Price 💌
A221	Sport-100 Helmet, Blue	Helmets	Accessories	13,8782	33,6442
A224	AWC Logo Cap	Caps	Clothing	5,2297	8,6442
A262	LL Road Frame - Red, 44	Road Frames	Components	181,4857	306,5636
A265	LL Road Frame - Red, 48	Road Frames	Components	187,1571	337,22

Inhalt der "Fact Sales" Tabelle:

Article Key 💌	Employee Key 💌	Order Date 💌	Order Number 💌	Order Quantity 💌	Sales Price 💌	Sales Amount 💌
A221	E283	01.10.2019	SO50311	2	33,6442	67,2884
A221	E281	03.10.2019	SO46633	6	33,6442	201,8652
A221	E283	03.10.2019	SO50259	5	33,6442	168,221
A221	E282	03.10.2019	SO50294	4	33,6442	134,5768
A221	E281	06.10.2019	SO46620	2	33,6442	67,2884
A221	E282	06.10.2019	\$O46625	10	33,6442	336,442
A221	E281	06.10.2019	SO50289	5	33,6442	168,221
A224	E285	01.10.2019	SO50279	2	8,6442	17,2884
A224	E283	01.10.2019	SO50311	10	8,6442	86,442
A224	E281	03.10.2019	SO46633	3	8,6442	25,9326
A224	E283	03.10.2019	SO50258	2	8,6442	17,2884
A224	E283	03.10.2019	SO50259	2	8,6442	17,2884
A224	E282	03.10.2019	SO50294	2	8,6442	17,2884
A224	E281	06.10.2019	SO46620	4	8,6442	34,5768
A224	E282	06.10.2019	SO46625	6	8,6442	51,8652
A265	E281	06.10.2019	SO50289	4	337,22	1348,88
A262	E281	01.10.2019	SO43688	1	306,5636	306,5636
A262	E285	03.10.2019	SO43685	1	306,5636	306,5636

Inhalt der "Dim Dates" Tabelle:

Date Key 💌	Year 💌	Quarter 💌	Month 💌	Weekday 💌	Weekday ID 💌
01.10.2019	2019	Q-4	Okt	Dienstag	2
02.10.2019	2019	Q-4	Okt	Mittwoch	3
03.10.2019	2019	Q-4	Okt	Donnerstag	4
04.10.2019	2019	Q-4	Okt	Freitag	5
05.10.2019	2019	Q-4	Okt	Samstag	6
06.10.2019	2019	Q-4	Okt	Sonntag	7
07.10.2019	2019	Q-4	Okt	Montag	1
08.10.2019	2019	Q-4	Okt	Dienstag	2
09.10.2019	2019	Q-4	Okt	Mittwoch	3
10.10.2019	2019	Q-4	Okt	Donnerstag	4

Ungefilterte Berichtsseite:

Selektion eines Elements in einem Feld einer Dimensionstabelle:

Die Selektion im Slicer filtert immer die Tabelle selbst, aus der das Feld kommt. Das können wir uns folgendermaßen illustrieren:

Article Key 💌	Article Name 💌	Product Subcategory	Product Category 🖵	Standard Cost 💌	List Price 💌
A265	LL Road Frame - Red, 48	Road Frames	Components	187,1571	337,22
A262	LL Road Frame - Red, 44	Road Frames	Components	181,4857	306,5636

Die <u>Liste der gefilterten "Article Keys"</u> aus der Dimensionstabelle wird über die Beziehung zur Tabelle "Fact Sales" übergeben und über das verbundene Feld "Article Key" <u>auf die Tabelle als Filter</u> angewendet. Das können wir uns wiederum folgendermaßen illustrieren:

Article Key 🖵	Employee Key 💌	Order Date 💌	Order Number 💌	Order Quantity 💌	Sales Price 💌	Sales Amount 💌
A262	E285	03.10.2019	SO43685	1	306,5636	306,5636
A262	E281	01.10.2019	SO43688	1	306,5636	306,5636
A265	E281	06.10.2019	SO50289	4	337,22	1348,88

- D.h. im Star Schema filtern alle Dimensionstabellen die Faktentabelle ("von außen nach innen"), die Faktentabelle aber nicht die Dimensionstabellen und auch die Dimensionstabellen sich nicht gegenseitig
- Weiterführende Übungen zur Filter Propagation: Anlegen eines zweiten Slicer auf ein anderes Feld der gleichen Dimensionstabelle Umstellen der Beziehungen auf bidirektional Einlesen von Duplikaten in der Key Spalte einer Dimensionstabelle und Erstellen einer m:n Beziehung zur Faktentabelle

Quelle: "Learn MODELLING 2 Star Schema.pbix"

Weiterführend: https://docs.microsoft.com/en-us/power-bi/desktop-relationships-understand

4.2 EIGENSCHAFTEN VON BEZIEHUNGEN IN POWER BI

4.2.1 ÜBERBLICK ZU DEN BEZIEHUNGSEIGENSCHAFTEN Beziehungen in Power BI sind Filterbeziehungen zwischen 2 Tabellen

Beziehungen in Power BI weisen folgende Eigenschaften auf:

- 1. Kardinalität
- 1:n ... absoluter Standardfall m:n ... Ausnahme -> riskant und langsam 1:1 ... seltene Anwendung
- 2. Filterrichtung single/unidirektional ... Standardfall both/bidirektional ... Ausnahme
- 3. Aktiv/inaktiv Zwischen zwei Tabellen kann es nur 1 aktive Beziehung geben
- 4. Vollständigkeit "BLANK ROW"

Die Elemente der beiden verknüpften Key Spalten müssen nicht matchen, für die nicht definierten Fakten-Keys wird in der Dimensionstabelle automatisch eine BLANK ROW angelegt

5. Multi-Column Keys

Es kann immer nur je 1 Feld einer Tabelle verknüpft werden

6. Stark/schwach

Beziehungen können auch schwach sein (m:n, Cross-Island)

4.2.2 KARDINALITÄT / BEZIEHUNGSTYPEN ("CARDINALITY")

Die Kardinalität gibt an, in welchem Mengenverhältnis die Einträge der beiden in Beziehung gesetzten Spalten stehen können oder müssen.

Die Kardinalität wird bei der Erstellung einer neuen Beziehung automatisch aufgrund der ermittelten Datengranularitäten der beiden zu verknüpfenden Felder automatisch festgelegt. Über die **Settings** der Beziehung kann diese eingesehen und kann auch manuell adaptiert werden:

Cardinality					
Many to one (*:1)					
Many to one (*:1)					
One to one (1:1)					
One to many (1:*)					
Many to Many (*:*)					

Dabei sind die Platzhalter folgendermaßen zu interpretieren:

- 1: 0 oder 1 verschiedene Elemente ("Distinct Values") eines Feldes
- m, n: 0, 1 oder mehrere verschiedene Elemente ("Distinct Values") eines Feldes

4.2.2.1 1:N BEZIEHUNG ("STARK")

Die 1:n Beziehung ist der absolute Standardfall und gilt als "starke" Beziehung (siehe dort).

Eines der beiden zu verknüpfenden Felder muß ein Primärschlüssel sein (d.h. garantiert eindeutige Werte enthalten), um die "1"-Seite der Beziehung stellen zu können.

Voraussetzungen:

Keine Duplikate

• Keine BLANK-Werte

4.2.2.2 M:N BEZIEHUNG ("SCHWACH")

Die m:n Beziehung ist der Ausnahmefall und gilt als "schwache" Beziehung (siehe dort).

Keines der beiden Felder muß ein Primärschlüssel sein (d.h. beide Felder können Duplikate enthalten)

- Relevant f
 ür Multi-Fakten Schema (jedoch auch dort anspruchsvoll in der Handhabung)
- Relevant f
 ür Composite Models (siehe dort)
- Wichtig: die m:n Beziehung sollte wegen des erhöhten Fehlerrisikos nur gezielt eingesetzt werden Auswertungen werden unvollständig, wenn keines der beiden Key-Felder die vollständige Liste der Elemente enthält -> kein Blank-Row Mechanismus.

Bei der Erstellung wird auch die folgende Warnmeldung angezeigt, um an die ggfs. unerwarteten/anspruchsvollen Effekte zu erinnern:

This relationship has cardinality Many-Many. This should only be used if it is expected that neither column (Article Key and Article Key) contains unique values, and that the significantly different behavior of Many-many relationships is understood. Learn more

Niemals: m:n als Lösung für Duplikate im Primärschlüsselfeld verwenden (siehe dort)

4.2.2.3 1:1 BEZIEHUNG

Eine 1:1 Beziehung deutet tendenziell auf eine Schwachstelle im Datenmodell hin: die beiden Tabellen können (mittels Merge-Query in PQ) zu 1 Tabelle kombiniert werden. Es kann aber dennoch Gründe geben, dennoch die Tabellen getrennt zu belassen und über eine 1:1 Beziehung zu verknüpfen.

4.2.3 FILTERRICHTUNG ("FILTER DIRECTION")

Die Filterrichtung gibt an, ob ein Filter von einer Tabelle einer Beziehung auf die verknüpfte Tabelle fließt oder nicht.

Die Filterrichtung wird bei der Erstellung einer neuen Beziehung aufgrund der ermittelten Kardinalität automatisch festgelegt (unidirektional bei 1:n und bidirektional bei m:n und 1:1).

Über die **Settings** der Beziehung kann diese eingesehen und angepasst werden:

Cross fi	Iter direction	
Single		*
Single		
Both		

Bei der m:n Beziehung kann/muß bei der Option "Single" auch die Filterrichtung ausgewählt werden:

Cross filter direction					
Both	*				
Single (Fact Invoices filters Fact Orders)					
Single (Fact Orders filters Fact Invoices)					
Both					

Die 1:1 Beziehung filtert immer bidirektional.

4.2.3.1 UNIDIREKTIONALE FILTERUNG ("SINGLE")

Die unidirektionale Filterung ist der Standardfall (und ist für 1:n und m:n Beziehungen verfügbar).

Filter werden von der "1"-Seite zur "n"-Seite weitergegeben, nicht aber anders herum:

D.h. ein Filter auf ein Attribut in der Dimensionstabelle ("1"-Seite) filtert zuerst die Dimensionstabelle ...

Article	ticle		Product		Product		Standard			
Кеу	Ŧ	Article Name	Ŧ	Subcategory	Ŧ	Category	₽	Cost	Ŧ	List Price 💌
A262		LL Road Frame - Red, 4	44	Road Frames		Component	s	181,48	857	306,5636
A265		LL Road Frame - Red, 4	48	Road Frames		Component	s	187,15	571	337,2200

... und über die Beziehung (und dessen Kardinalität) wird in der <u>Faktentabelle</u> ("n"-Seite) ein Filter auf die Keys der Beziehung angewendet, damit verändert sich der Filter Context (für die Ermittlung der Measures):

Article	Employe	e <u>e </u>	Order		Or <u>der</u>	Sa <u>les</u>	Sa <u>les</u>
Key 🎞	Кеу	🝸 Order Dat 🍸	Number	•	Quant 🝸	Pr 💌	Amo 🚩
A265	E281	06.10.2019	9 SO50289		4	337,2200	1.348,88
A262	E281	01.10.2019	9 SO43688		1	306,5636	306,56
A262	E285	03.10.2019	9 SO43685		1	306,5636	306,56
					_		
			Total:		6		1.962,01

 D.h. im Star Schema filtern alle Dimensionstabellen die Faktentabelle ("von außen nach innen"), die Faktentabelle aber nicht die Dimensionstabellen und auch die Dimensionstabellen sich nicht gegenseitig

4.2.3.2 BIDIREKTIONALE FILTERUNG ("BOTH")

Die bidirektionale Filterung ist die Ausnahme. Für 1:1 Beziehungen ist die Filterrichtung zwingend bidirektional, für 1:n und m:n Beziehungen kann gewählt werden.

Filter fließen in beide Richtungen der Beziehung:

D.h. ein Filter auf ein Feld in der Faktentabelle ("n"-Seite) filtert zuerst die Faktentabelle...

Article	Employ	ee	Order	Order	Sales	Sa <u>les</u>
Key 🖵	Key	💌 Order Dat 🝸	Number 🏼 🕶	Quant 🝸	Pr 💌	Amo 🝸
A221	E281	06.10.2019	SO46620	2	33,6442	67,29
A224	E281	06.10.2019	SO46620	4	8,6442	34,58
			Total:	6		101,87

... und über die Beziehung (und dessen Kardinalität) wird in der <u>Dimensionstabelle</u> ("1"-Seite) ein Filter auf die Keys der Beziehung angewendet, damit verändert sich der Filter Context auch in der Dimensionstabelle (für die Anzeige der Einträge in einem Slicer oder der Aggregation eines Dimension-Measures):

Article		Product	Product	Standard	
Key 🖵	Article Name	Subcategory	Category	Cost 💌	List Price 💌
A221	Sport-100 Helmet, Blu	e Helmets	Accessories	13,8782	33,6442
A224	AWC Logo Cap	Caps	Clothing	5,2297	8,6442

 D.h. im Star Schema filtern alle Dimensionstabellen die Faktentabelle ("von außen nach innen") und die Faktentabelle filtert zusätzlich jene Dimensionstabellen, die über bidirektionale Filter verbunden sind. Sind alle Beziehungen im Star Schema bidirektional, dann filtern sich alle Tabellen gegenseitig.

Anwendungsfelder:

 Im <u>Star Schema</u> kann die bidirektionale Filterung dazu verwendet werden, um ein komfortables "gegenseitiges Filtern" der Slicer zu erreichen.

https://linearis.at/blog/2018/09/14/gegenseitiges-filtern-von-slicer-in-power-bi/

 Das <u>Many-to-Many Schema</u> kann nur mit einer bidirektionalen Filterbeziehung abgebildet werden (siehe dort) Beachten Sie diesbezüglich das Setting für die Row-Level-Security (dieses muß bei den entsprechenden Security Patterns aktiviert werden, damit die bidirektionale Filterung nicht nur bei Measure Berechnungen usw. sondern auch bei aktiver RLS wirkt):

Cross filter direction	
Both	*
Apply security filter in both directions	

Die bidirektionale Filterung der <u>m:n Beziehung</u> ist idR erwünscht und sinnvoll

Wichtige Einschränkungen / Empfehlungen:

- Die bidirektionale Filterung auf die Datumsdimension führt zur Beeinträchtigung einiger Time Intelligence Funktionen (siehe dort) -> daher für die Datumsdimension nicht aktivieren
- Im Multi-Fakten Schema ist das Risiko der "Model Ambiguity" beträchtlich (siehe dort) -> bidirektionale Filterung (und m:n Beziehung) nur sehr gezielt und gut getestet einsetzen -> ggfs. Verwendung nur über die DAX-Funktion USERELATIONSHIP in ausgewählten Measures
- Geringere Performance

DATENMODELLIERUNG MIT POWER BI

Ausgabe vom 27.04.2021

Weiterführend:

https://docs.microsoft.com/en-us/power-bi/desktop-bidirectional-filtering -> Download Whitepaper

Bidirectional cross-filtering in SQL Server Analysis Services 2016 and Power BI Desktop
Microsoft BI and Analytics Technical Article
Writer: Kasper de Jonge, Senior Program Manager, Microsoft Corp.
Contributor: Owen Duncan, Senior Content Developer, Microsoft Corp.
Applies to: SQL Server 2016 Analysis Services, Power BI Desktop
Summary: This paper introduces bidirectional cross-filtering, a new feature in Microsoft SQL Server 2016 Analysis Services and Microsoft Power BI Desktop.
Copyright 1
Introduction 2
How do relationships work in Analysis Services?
The traditional BI many-to-many pattern
Measures in dimension tables
Ambiguous relationships tables, what do end users want to see?
Multiple fact tables (a Fact constellation), too much filtering?
The date table and bidirectional relationships 18
Use DAX to enable cross-filtering per measure 21
Row level security and bidirectional relationships
Summary

4.2.4 AKTIVE UND INAKTIVE BEZIEHUNGEN ("ACTIVE / INACTIVE RELATIONS")

Zwischen zwei Tabellen kann es mehrere Beziehungen geben, aber nur 1 davon kann aktiv sein

 d.h. es kann beliebig viele weitere inaktive Beziehungen <u>zur gleichen Tabelle</u> geben (die über die DAX-Funktionen USERELATIONSHIP oder CROSSFILTER in Measures genutzt werden können)

- d.h. mehrere Beziehungen zwischen den gleichen zwei Tabellen wirken <u>nicht</u> additiv, es gibt keine "UND-Filterbeziehungen" zwischen den gleichen 2 Tabellen in Power BI
- d.h. eine Tabelle kann beliebig viele aktive Beziehungen <u>zu verschiedenen Tabellen</u> haben (also je 1 aktive Beziehung zu beliebig vielen weiteren Tabellen)