Visualisierung: Wärmekarte aus Temperatur-Datenlogger

WaermekarteDie Auswertung von Sensordaten ist in der Produktionssteuerung schon lange Standard und gewinnt jetzt im Zeitalter von Big Data und Internet-of-Things in allen Lebensbereichen große Bedeutung.

Wir sehen uns in diesem Beitrag an, wie mit einem handelsüblichen Temperatur-Datenlogger und den Bordmitteln von Excel 2013, insbesondere der Wärmekarten-Visualisierung, wertvolle Erkenntnisse zur Temperatur- und Luftfeuchtigkeitsentwicklung in einem Raum gewonnen werden können.

1. Sensordaten aus Datenlogger

Als Datenlogger verwenden wir einen "VOLTCRAFT DL-101T Temperatur-Datenlogger", im Handel um knapp EUR 60 erhältlich:

VOLTCRAFT DL-101T Temperatur-Datenlogger

Den Datenlogger lassen wir etwa 5 1/2 Tage an einer repräsentativen Stelle im Raum mit der Einstellung "alle 30 Sekunden" aufzeichnen. Das ergibt 16.027 Sensor-Datensätze, die wir als Excel Liste erhalten:

1. Basisdaten

2. Datenmodell mit Power Pivot

Wir werten die Sensor-Datentabelle nicht direkt mit einem PivotTable aus, sondern fügen Sie als sogenannten "Linked Table" dem in Excel 2013 integrierten Power Pivot Datenmodell hinzu. Nach der automatischen Erstellung des Datenmodells reichern wir das sehr einfache Datenmodell um 3 Calculated Columns für die effektive Auswertung der Tageszeit sowie um 2 Measures für die Durchschnittsbildung der Temperatur- und Luftfeuchte-Messpunkte an:

2. Datenmodell

Hier die Formeln zu den Calculated Columns und Measures:

  • ZEIT Tag =Day([Aufnahmezeit]) & ". " & FORMAT(Date(Year([Aufnahmezeit]);Month([Aufnahmezeit]);Day([Aufnahmezeit]));"MMMM")
  • ZEIT Stunde ="Stunde " & FORMAT(Hour([Aufnahmezeit]);"00")
  • ZEIT Minute ="Minute " & FORMAT(Minute([Aufnahmezeit]);"00")
  • Temperatur AVG: =AVERAGE([Temperatur (ºC)])
  • Luftfeuchte AVG: =AVERAGE([Relative Luftfeuchtigkeit (%)])

3. Visualisierung mit Excel PivotTable

Im nächsten Schritt erstellen wir direkt aus dem Power Pivot Fenster heraus einen adhoc PivotTable-Bericht mit folgender Konfiguration der Pivotfelder:

3. Adhoc Pivotreport

Technisch ist das Datenmodell jetzt bereits fertig, aber Entwicklungen in den Werten sind für normal-begabte Menschen mit freiem Auge noch keine zu erkennen. Daher setzen wir die Wärmekarten-Visualisierung in Excel 2013 ein. Einfach den Cursor an eine beliebige Zelle im PivotTable stellen und Bedingte Formatierung -> Farbskalen (= Wärmekarte) anwenden:

4. Bedingte Formatierung - Schritt 1

Damit nicht nur die eine markierte Zelle formatiert wird - das hätte so noch keinen Sinn - klicken wir auf das in der rechten unteren Ecke der formatierten Zelle erscheinende Kontextmenü und wählen die mittlere Option ("Alle Zellen mit "Temperatur AVG" Werten") aus:

5. Bedingte Formatierung - Schritt 2

FERTIG ... Jetzt können wir mit einem Blick erkennen, wie sich die Temperatur im Laufe der 5 gemessenen Tage entwickelt:

6. Waermekarte

Auf das Luftfeuchte-Measure im rechten Bereich des PivotTables wird nach der gleichen Methode ebenfalls eine Wärmekarten-Visualisierung hinzufügt. Hinter jedem hier sichtbaren Wert stehen übrigens 120 Messwerte, da der Sensor auf eine Protokollierung alle 30 Sekunden konfiguriert wurde. Die Average-Berechnung des Measures führt zur Darstellung des arithmetischen Mittels auf Stundenebene (und natürlich auch auf allen anderen Ebenen).

Natürlich handelt es sich aufgrund des kurzen Betrachtungszeitraums um eine vereinfachte Anwendung. Für große Datenmengen in langen Zeiträumen und an zahlreichen Messpunkten ist anstelle von Power Pivot die Tabular Model Technologie oder Azure Stream Insight einzusetzen.

Teilen Sie Ihre / teile Deine Erfahrungen mit der Auswertung von Sensordaten und hinterlasse einen Kommentar!

Über den Autor

Blog auf Feedly abonnieren

Kategorien

Verwandte Beiträge

Power BI Camp - Präsenztrainings in Wien und Nürnberg!

Dashboarding mit Power BI, DAX & Datenmodellierung und Power Query - als einzelnes Modul oder als ganze Trainingswoche!

Nürnberg 07. bis 11. Juni 2021
Wien 21. bis 25. Juni 2021

Jetzt buchen und -5 % Last Minute Rabatt lukrieren.
Jetzt buchen
Share on linkedin
Share on twitter
Share on facebook

Leave a Replay

2 Gedanken zu „Visualisierung: Wärmekarte aus Temperatur-Datenlogger“

  1. Vielen Dank für die Anleitung!

    Hättest Du einen Tipp, wie einige tausend Temperaturwerte, viertelstündlich über einige Monate mit einem
    Logger gemessen, aussagekräftig als Diagramm visualisiert werden könnten? Es geht darum, den Verlauf der Tagestemperaturen erkennen zu können mit Minimum/Maximum und Durchschnitt.

    Gruß
    Armin

    Antworten
    • Nein, leider nicht, aber das würde mich auch sehr interessieren. Halte uns hier gerne über Deine Erkenntnisse am Laufenden …
      Grüße
      Robert

      Antworten

Schreibe einen Kommentar zu Robert Lochner Antworten abbrechen

Kostenlos zum Newsletter anmelden

Ihre Anfrage

Schicken Sie uns Ihre Fragen und Anregungen!